الكسر الدال على الأجزاء الملونة بالأحمر، تُستخدم الكسور على نطاق واسع في الرياضيات وفي العديد من التطبيقات الحياتية والعلمية ، وهي تشير عمومًا إلى أجزاء مأخوذة من أجزاء متطابقة من الكل ، بينما يوجد ما يُعرف باسم جزء الوحدة الذي يشير إلى جزء واحد من الكل ، و يجيب لك الموقع عن هذا السؤال ، ثم يتطرق إلى وصف موجز للكسور وأنواعها.
الكسر الدال على الأجزاء الملونة بالأحمر

الهدف من استخدام الكسور هو معرفة القيمة التي تمثلها مجموعة معينة بين جميع العناصر الأخرى ، وفي هذا السؤال نهدف إلى معرفة النسبة المئوية لوجود الأجزاء الملونة باللون الأحمر بين جميع الأجزاء الملونة باللون الأحمر والأزرق ، ويمكن معرفة ذلك بعد أن تكون الأجزاء الحمراء 2 على البسط ، ثم عد كل الأجزاء 5 لتكون في المقام ، فتصبح الإجابة:
- 2 / 5
مقارنة الكسور

يشير الكسر نفسه إلى قيمة عددية تخضع لمجموعة الأعداد الحقيقية ، سواء كانت أرقامًا طبيعية أو عددًا صحيحًا أو أعدادًا عشرية ، على سبيل المثال 3/4 يشير إلى قيمة 0.75 – بدون واحد – وهذا يجعل من الممكن المقارنة الكسور مع بعضها البعض ومعرفة أيهما أكبر من الأصغر ويمكن تفسير ذلك من خلال الأمثلة التالية:
- 1/2 أكبر من 1/4.
- 3/4 – أكبر من 1/2.
- 1/12 أصغر من 1/6.
- 2/4 يساوي 1/2.
أي الكسور التالية أكبر من ربع؟
أنواع الكسور في الرياضيات

نظرًا للاستخدام الواسع والتطبيقات المتعددة التي تعتمد على الكسور ، فهناك أنواع متعددة من الكسور كلها لغرض واحد ، وهو تحديد جزء من الكل ، ولكنها تتنوع لتبسيط وفقًا للتطبيق ، على سبيل المثال ، النسبة المئوية يمكن اعتباره كسرًا بمكانه الدائم 100 ، وبشكل عام هذه هي أهم أنواع الكسور:
- الكسر المعتاد البسط أصغر من المقام.
- الكسر غير العادي البسط أكبر من المقام.
- كسر الوحدة البسط يساوي 1.
أي كسر عشري يعادل الكسر العادي المقابل
هذا يقودنا إلى نهاية مقالتنا الكسر الدال على الأجزاء الملونة بالأحمرحيث شرحنا لك الإجابة الصحيحة ، كما نقدم لك شرحًا موجزًا للكسور في الرياضيات وأهم أنواعها وطريقة مقارنتها.